

TCP/IP - An Introduction for
8 & 16 bit Microcontroller

Engineers

By C. L. Stephens

Computer Solutions Ltd
1a New Haw Road

Addlestone

Surrey, KT15 1BU, England

Tel: +44 (0)1932 829460

Website: www.computer-solutions.co.uk

Computer Solutions Ltd make no warranty of any kind with regard to this material, including, but
not limited to the implied warranties of merchantability and fitness for a particular purpose.
Computer Solutions Ltd shall not be liable for errors contained herein nor for incidental or
consequential damages in connection with the furnishing, performance, or use of this material.
This manual is a tutorial and as such its contents are intended for explanation purposes not as
definitions.

CMX-MicroNet is a registered trademark of CMX Systems Inc, RTIP and Webster are registered
trademarks of EBSnet Inc all other trademarks are acknowledged.

This document may be copied in printed or electronic form for individual study purposes but may
not be reproduced for sales or marketing purposes without specific written permission from
Computer Solutions Ltd. If so copied it must not be modified in any way.

I would like to thank Paul Bosselaers the MicroNet product manager and its lead programmer for
helpful discussions and for reviewing much of this document although any errors remain the
responsibility of the Author.

Version 1.1 April 2002

Some sections of this manual contain material copyright CMX Systems Inc and Catalyst Inc, these
have been used with their permission.

CMX-MicroNet, CMX-TCPIP and EBS-RTIP may be purchased outside the USA from:

Computer Solutions Ltd
1a New Haw Road
Addlestone, Surrey
KT15 2BZ, England

Tel: 01932 829460
www.computer-solutions.co.uk
sales@computer-solutions.co.uk

In the USA the CMX products (MicroNet, CMX-TCPIP, CMX-RTX) are available from:

CMX Systems Inc
12276 San Jose Blvd.
Suite 119
Jacksonville
FL 32223, USA

Tel: +1(904)8801840
Email: cmx@cmx.com
Website: www.cmx.com

In the USA the EBSnet products (RTIP, Webster) are available from:

EBSnet Inc
P.O. Box 873
Groton
MA 01450, USA

Tel: +1(978)448 9340
Email: sales@ebsnetinc.com
Website: www.ebsnetinc.com

Table of Contents

1. INTRODUCTION ...5
1.1. OBJECTIVES..5
1.2. TYPICAL APPLICATION ...6

Example 1 Micro to Micro ..6
Example 2 Micro to PC ...6
Example 3 Remote dial-up Micro..7
Example 4 Multi Drop Networks...7

2. TRANSMISSION CONTROL PROTOCOL ...7

3. USER DATAGRAM PROTOCOL ...9

4. MAKING THE CONNECTION..10
4.1. IP ADDRESS AND HOSTNAMES ...10
4.2. SERVICE PORTS ..11
4.3. SOCKETS...11
4.4. BLOCKING VS. NON-BLOCKING SOCKETS ..12
4.5. CLIENT-SERVER APPLICATIONS ...12

5. DRIVERS LAYERS AND STACKS ...14
5.1. PHYSICAL LAYER ...14
5.2. LINK LAYERS - SLIP & PPP ..15
5.3. MODEMS ..15
5.4. LINK LAYERS – ETHERNET...16

6. HIGHER LEVEL PROTOCOLS..16
6.1. FILE TRANSFER PROTOCOL (FTP) ..16
6.2. GETTING AN IP ADDRESS (BOOTP, DHCP & TFTP)............................17
6.3. WEB SERVER (HTTP) ..17
6.4. JAVA AND BEYOND ...18
6.5. SIMPLE MAIL TRANSFER PROTOCOL (SMTP) ..19
6.6. POST OFFICE PROTOCOL (POP3)..19
6.7. SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP)19
6.8. PING ...19

7. CHOOSING A PROTOCOL ...20

Example 1 Micro to Micro ..20
Example 2 Micro to PC ...20
Example 3 Remote dial-up Micro..21
Example 4 Multi Drop Networks...21

8. CMX MICRONET FEATURES AND LIMITATIONS22

9. INTEGRATING CMX-MICRONET..23
9.1. USING TCP/IP FOR COMMUNICATIONS ..23
9.2. USING A SERVER ..23
9.3. CMX-MICRONET WITH AN RTOS ...24
9.4. ALLOCATING ADDRESSES...24

10. FURTHER READING AND BROWSING ..25

11. COMMON MNEMONICS...26

1. Introduction

1.1. Objectives
The aims of this white paper are twofold, firstly to act as an introduction to the
TCP/IP protocols for Embedded Engineers who may not have used them before in
applications. Secondly we will go into some detail of the CMX-MicroNet
implementation of TCP/IP. MicroNet provides an implementation of TCP/IP that
has been optimised for use on small 8 and 16 bit CPUs that may have very little
memory available and so would not be able to use large conventional stacks. In
order to achieve a small footprint some limitation on the stacks operations have
been made and we explain what these are in the relevant sections.

To provide an example of the memory required for MicroNet here are some ROM
& RAM figures for the AVR, a 16 bit CPU and the 8051 an 8 bit CPU.

AVR
ROM
UDP/IP + core 4918 bytes
or
TCP/IP + core 8184 bytes
or
UDP + TCP/IP + core 9102 bytes

PPP 3804 bytes
Ethernet 2972 bytes
Modem 442 bytes
HTTP Server 2932 bytes
Virtual file 1436 bytes

RAM (not counting size of buffers)
UDP/SLIP 50 bytes
TCP/PPP/HTTP 712 bytes

8051 (Keil)
ROM
UDP/IP + core 5367 bytes
or
TCP/IP + core 8340 bytes

PPP 2883 bytes
Ethernet 3055 bytes
Modem 480 bytes
HTTP Server 3013 bytes
FTP Server 3967 bytes
Virtual file 932 bytes
DHCP Client 3297 bytes
SMTP Client 3260 bytes

RAM (not counting size of buffers)
UDP/SLIP 55 bytes
TCP/PPP/HTTP 620 bytes

Computer Solutions Ltd also sells the EBS-RTIP fully compliant stack, which is
more appropriate should you have a CPU with a significant amount of available
memory. For comparison TCP/IP alone on the RTIP stack takes ~ 64K ROM and
32K of RAM. This stack is available as a portable system written in C and
modelled on a PC implementation to run standalone or under your own OS.
Alternatively we can supply it badged as CMX-RTIP, configured for specific
embedded CPUs to operate under CMX-RTX the Real Time Operating System.
This stack also supports many of the options not available with MicroNet as well
as some of the more complex protocols such as SSL, IMAP, NFS who’s details
we have left out of this introductory tutorial. Even if you decide to use this larger
stack we hope you will still find this a helpful introduction to the subject of
TCP/IP protocols and their use in embedded applications.

Sections 2 – 4 of this introduction to the topic are loosely based (with permission)
on the introduction to TCP/IP found in Catalyst Inc’s SocketWrench manual (see
further reading).

TCP/IP for 8 and 16 bit Micros 5

1.2. Typical Application
Some of the applications, which we see MicroNet being used in, are directly and
permanently connected to the Internet. Others will connect to the Internet
intermittently to exchange messages or to upload and download files. But the
majority of the applications that benefit from using MicroNet will consist of
devices that are connected to one another or to PC’s by RS232, dial up telephone
lines, Ethernet or other hardware connection techniques to form local networks
(sometimes known as intranets). Much of the interest among embedded engineers
is simply the desire to use the well-tried family of protocols and application
packages developed for the Internet within their local networks. These protocols
are collectively referred to as Internet Protocols, IP or, from the name of the most
commonly used - TCP/IP. This name is sometimes loosely used to encompass
application packages and other more advanced protocols based on TCP/IP such as
File Transfer Protocol (FTP, and its sibling TFTP Trivial File Transfer Protocol),
Mail (SMTP – to send POP3 – to receive) and Web Browsing (HTTP).

We will start by giving a few examples where embedded systems might use these
protocols so that you can be considering typical scenarios that will later be used to
highlight the relevance of different features of the protocols.

Example 1 Micro to Micro

Micro Micro

In these examples the application will run on a microprocessor or increasingly on
multiple microprocessor configurations used either locally to share the load, or
over longer distances to put intelligence close to sensors or actuators.

Example 2 Micro to PC

Micro PC

There are two reasons why we may be looking at this -

Where the micro performs data acquisition or control and the PC data processing
- in which case the PC’s presence may be a necessary part of the total system.

Where the PC may be used as a convenient terminal to support complex set-up or
diagnostic capabilities – without TCP/IP these PC’s would typically run an RS232
terminal emulator to communicate with a custom built command line interpreter
software module within the application.

6 TCP/IP for 8 and 16 bit Micros

TCP/IP for

Example 3 Remote dial-up Micro

MODEM PC MODEMMICRO

In this example the micro is remote f
Plain Old Telephone Services (PTOS
the local link for infrequent mainten
automated systems where the PC di
information whenever it needs it.

The normal interface to a modem is
Hayes “AT” command sequences to
RS232 interfaces and similar comman
units to link to the GSM radio netw
TCP/IP. The GSM network is ty
advantages of portability, low usage c

Example 4 Multi Drop N

MICRO2MICRO1

Ethernet or othe

As Ethernet cards have become s
dramatically. The availability of Ethe
and 16 bit micros, at less than $10 e
using networked PC’s will make th
media for industrial systems.

It is also clear that the software co
network could be easily adapted to op
RS485, CAN and other proprietar
appropriate hardware drivers.

2. Transmission Control
When two computers wish to excha
several components that must be in pl
received. Of course, the physical hard
Ethernet link or a serial communicat
POTS
 8 and 16 bit Micros 7

GSM

rom the PC and the connection is made via
) or GSM radio. This could simply replace
ance functions or we can think up more

als a whole array of outstations to gather

via the RS232 port of the micro using the
 control the modem. Radio modems with
d sets are now available that allow low cost
ork and these can then communicate via
pically less reliable than cable but has

osts and minimum installation charges.

etworks

…. PC2 PC1

r multi drop protocols

tandard on PC’s their price has fallen
rnet chips that are easily interfaced to both 8
ach, along with the ease and familiarity of
is an increasingly popular communication

mponents required to control an Ethernet
erate multi station Transport Layers such as
y multi drop links by the provision of

 Protocol
nge information over a network, there are
ace before the data can actually be sent and
ware must exist, which is typically either an
ions port for direct or dial-up connections.

Beyond this physical connection, however, computers also need to use a protocol
that defines the parameters of the communication between them. In short, a
protocol defines the "rules of the road" that each computer must follow so that all
of the systems in the network can exchange data. One of the most popular
protocols in use today is TCP/IP, which stands for Transmission Control
Protocol/Internet Protocol.

By convention, TCP/IP is used to refer to a suite of protocols, all based on the
Internet Protocol (IP). Unlike a single local network, where every system is
directly connected to each other, an internet is a collection of networks, combined
into a single, virtual network. The Internet Protocol provides the means by which
any system on any network can communicate with another as easily as if they
were on the same physical network. As our applications may run on a wide range
of computers from 8 bit to 32 we will refer to each system on the network as a
CPU, be it a large Unix Server (host), a PC or a microprocessor irrespective of its
power. Each CPU is assigned a unique 32-bit number, which can be used to
identify it over the network. Typically, this address is broken into four 8-bit
numbers (octets – values 0 – 255) separated by periods. This is called dot-
notation, and looks something like "192.43.19.64". The first one, two or three of
these octets are used to identify the network that the CPU is connected to, and the
remainder identifies the CPU itself. This gives three "classes" of addresses,
referred to as "A", "B" and "C". The rule of thumb is that class "A" addresses are
assigned to very large networks, class "B" addresses are assigned to medium sized
networks, and class "C" addresses are assigned to smaller networks (networks
with less than 250 hosts). Addresses starting 224-255 are reserved for testing.

When a CPU sends data over the network using the Internet Protocol, it is sent in
discrete units called datagrams, also commonly referred to as packets. A
datagram consists of a header followed by application-defined data. The header
contains the addressing information that is used to deliver the datagram to its
destination, much like an envelope is used to address and contain postal mail.
And like postal mail, there is no guarantee that a datagram will actually arrive at
its destination. In fact, datagrams may be lost, duplicated or delivered out of
order during their travels over the network. Needless to say, this kind of
unreliability can cause a lot of problems for software developers. What’s really
needed is a reliable, straightforward way to exchange data without having to
worry about lost packets or jumbled data.

To fill this need, the Transmission Control Protocol (TCP) was developed. Built
on top of IP, TCP offers a reliable, full-duplex byte stream that may be read and
written to in a fashion similar to the use of a serial port. The advantages of this
are obvious: the application programmer doesn’t need to write code to handle
dropped datagrams, and instead can focus on the application itself. And because
the data is presented as a stream of bytes, existing code can be easily adopted and
modified to use TCP.

TCP is known as a connection-oriented protocol. In other words, before two
programs can begin to exchange data they must establish a "connection" with
each other. This is done with a three-message handshake in which both sides
exchange packets and establish the initial packet sequence numbers (the sequence
number is important because, as mentioned above, datagrams can arrive out of
order; this number is used to ensure that data is received in the order that it was

8 TCP/IP for 8 and 16 bit Micros

sent). When establishing a connection, one program must assume the role of the
Client, and the other the Server. The Client is responsible for initiating the
connection, while the Server’s responsibility is to wait, listen and respond to
incoming connections. Once the connection has been established, both sides may
send and receive data until the connection is closed.

TCP is therefore ideal for situations where the link may be noisy and data
integrity is not checkable at the application level. Of course, this error checking
and recovery means that the TCP option code is larger but then the application
does not need to do further checking. The application does however have to cope
with the situation where TCP times out and no data gets through such as line
breaks or failure of the other processor. If using IP is like sending a letter, with
no knowledge of whether it got to the recipient, TCP is like a telephone
conversation – while you are both still talking you know that the message has got
through.

3. User Datagram Protocol
Unlike TCP, the User Datagram Protocol (UDP) does not present data as a stream
of bytes, nor does it require that you establish a connection with another program
in order to exchange information. Data is exchanged in discrete units called
datagrams, which are similar to IP datagrams. In fact, the only features that UDP
offers over raw IP datagrams are port numbers and an optional checksum.

UDP is sometimes referred to as an unreliable protocol because when a program
sends a UDP datagram over the network, there is no way for it to know that it
actually arrived at its destination. MicroNet’s main application area is use on
microprocessors that may have limited resources. It is therefore all too possible
that a slow micro may not be able to keep up with a fast PC sending multiple
UDP packets and that, without a handshake to limit the speed to that of the
slowest device, packets may be lost. This means that the sender and receiver must
typically implement their own application protocol on top of UDP. Much of the
work that TCP does transparently (such as acknowledging the receipt of packets,
re transmitting lost packets, checking the order in which packets are received and
so on) must be performed by the application itself.

With the limitations of UDP, you might wonder why it is used at all. Well UDP
has the advantage over TCP in three critical areas: code size, transmission speed
and packet overhead. To make TCP a reliable protocol, it goes to great lengths to
insure that data arrives at its destination intact, and as a result it exchanges a fairly
high number of packets per Kbytes of data. UDP doesn’t have this overhead, and
is, therefore considerably faster than TCP. In those situations where speed is
paramount, or the number of packets sent over the network must be kept to a
minimum, UDP is the solution. A further advantage of UDP is that it can be used
to send “One To Many” messages.

Examples of where UDP might be adequate is in a system that reported air
temperatures every second – if one was missed the receiving CPU might
reasonably assume the temperature had not changed – obviously if it did not get
data for 6 hours that assumption would not be valid! If the CPU has a mechanism

TCP/IP for 8 and 16 bit Micros 9

for requesting a particular data point then in effect the application has its own
built in error recovery mechanisms and UDP’s other advantages might outweigh
TCP’s security.

4. Making the connection

4.1. IP Address and Hostnames
In order for an application to exchange data with a remote process, it must have
several pieces of information. The first is the IP address of the CPU that the
remote program is running on. Although this address is internally represented by
a 32-bit number, it is typically expressed in either dot-notation or by a logical
name called a hostname. MicroNet currently needs each micro to either be hard
coded with an IP address in dot notation or be allocated an IP address and has no
facilities for using hostnames.

Like an address in dot-notation, hostnames are divided into several pieces
separated by periods, called domains. Domains are hierarchical; with the top-
level domains defining the type of organization that network belongs to, with sub-
domains further identifying the specific network.

root

edugov

computer-solutions

uk net

co

com

blue red

In this figure, the top-level domains are "gov" (government agencies), "com"
(commercial organizations), "edu" (educational institutions) "net" (Internet
service providers) and a number of country specific abbreviations “UK” standing
for the United Kingdom. The fully qualified domain name is specified by naming
the host and each parent sub-domain above it, separating them with periods. For
example, the fully qualified domain name for the "red" host would be
"red.computer-solutions.co.uk". In other words, the system "red" is part of the
"computer-solutions" domain (a company’s local network), which in turn is part
of the "co" domain (a domain used by registered companies) which is part of the
UK domain which contains all domains registered in the United Kingdom.

10 TCP/IP for 8 and 16 bit Micros

In order to use a hostname instead of a dot-address to identify a specific system or
network, there must be some correlation between the two. This is accomplished
by one of two means: a local host table or a name Server. A host table is a text
array that lists the IP address of a host, followed by the names that it’s known by.
On your PC you will find the host table in a file such as C:\Windows\hosts and
you can edit it to allow your PC to communicate with micros running MicroNet
by name and not by number.

A name Server, on the other hand, is a program running somewhere on a network
which can be presented with a hostname and which will return that host’s IP
address.

4.2. Service Ports
In addition to the IP address of the remote CPU, an application also needs to
know how to address the specific program on the CPU that it wishes to
communicate with. This is because large processors running TCP/IP will
typically be multi-tasked and running a number of different links. This is
accomplished by specifying a service port, a 16-bit number that uniquely
identifies an application running on the CPU.

On the PC instead of numbers service names are usually used. Like hostnames,
service names are usually matched to port numbers through a local file,
commonly called C:\Windows\Services. This file lists the logical service name,
followed by the port number and protocol used by the Server.

A number of standard service ports and names are used by Internet-based
applications and these are referred to as well-known services. These services are
defined by a standards document and include common application protocols such
as FTP, POP3, SMTP and HTTP. Port numbers 1 – 1023 are reserved for well-
known services. Client port numbers are called ephemeral ports and values
between 1024 and 5000 are usually used. When setting up an application specific
link (say a straight TCP link between a micro and a PC) you should avoid using
the well-known services range. Remember that a service name or port number is
a way to address an application running on a remote host. Because a particular
service name is used, it doesn’t guarantee that the service is available, just as
dialling a telephone number doesn’t guarantee that there is someone at home to
answer the call.

4.3. Sockets
MicroNet provides an API that will allow the application programmer to send
individual TCP or UDP packets. However, it is anticipated that most users will
employ the socket interface which is significantly simpler to program.

The previous sections described what addressing information a program needs to
communicate over a TCP/IP network. The next step is for the program to create
what is called a socket, a communications end-point that can be likened to a
telephone. However, creating a socket by itself doesn’t let you exchange
information, just like having a telephone in your house doesn’t mean that you can
talk to someone by simply taking it off the hook. You need to establish a

TCP/IP for 8 and 16 bit Micros 11

connection with the other program, just as you need to dial a telephone number,
and to do this you need the socket address of the application that you want to
connect to. Once a connection has been established to a socket in the addressee
the applications programmer need only consider the data to be read/written.

Using the socket interface is very simple, the program uses mn_open to make the
connection and get a socket.

socket = mn_open(dest_ip, src_port, dest_port,
client, TCP, recv_buff, buff_len);

then mn_send or mn_receive to pass the data

status = mn_send(socket, msg_ptr, msg_len);

status = mn_recv(socket, buff_ptr, buff_len);

Once the connection is no longer required

status = mn_close (socket);

4.4. Blocking vs. Non-Blocking Sockets
One of the first issues that you’ll encounter when developing your Socket
application on a PC is the difference between blocking and non-blocking sockets.
Whenever you perform some operation on a socket, it may not be able to
complete the operation immediately if not then when does it return control back to
your program? For example, a read on a socket cannot complete until the remote
host has sent some data. If there is no data waiting to be read, one of two things
can happen: the function can wait until some data has been written on the socket,
or it can return immediately with an error that indicates that there is no data to be
read.

The first case is called a blocking socket. In other words, the program is
"blocked" until the request for data has been satisfied. When the remote system
does write some data on the socket, the read operation will complete and
execution of the program will resume. The second case is called a non-blocking
socket, and requires that the application recognize the error condition and handles
the situation appropriately.

For historical reasons, the default behaviour is for socket functions to "block" and
not return until the operation has completed and this is how MicroNet’s sockets
operate. However, using blocking sockets in Windows can introduce some
special problems and you are warned that a different strategy will need to be
adopted in any Windows application that communicates with a micro.

4.5. Client-Server Applications
Programs written to use TCP are developed using the Client-Server model. As
mentioned previously, when two programs wish to use TCP to exchange data, one
of the programs must assume the role of the Client, while the other must assume
the role of the Server. The Client application initiates what is called an active

12 TCP/IP for 8 and 16 bit Micros

open. It creates a socket and actively attempts to connect to a Server program.
On the other hand, the Server application creates a socket and passively listens for
incoming connections from Clients, performing what is called a passive open.
When the Client initiates a connection, the Server is notified that some process is
attempting to connect with it. By accepting the connection, the Server completes
what is called a virtual circuit, a logical communications pathway between the
two programs. Data may now be interchanged between the two usually as a result
of requests that originate at the Client. It is useful to think of the Client as being
in control of the Server when looking at an overall design. Many of us
automatically think of large computers when we say Server but it is this control
aspect that determines whether the embedded micro or the CPU it is connected to
is the Server.

It’s important to note that in order to keep overheads low when MicroNet accepts
a connection to a socket (if the port numbers match) it allocates it to the socket
that was listening. If required MicroNet will open additional sockets as part of
the Server’s function – for example Web Browsers may use multiple sockets, one
for each element on the page. On larger CPUs such as the TCP/IP stack running
on a PC, without the constraints imposed by limited resources, the original socket
may remain listening for additional connections and the link may communicate
via a new socket. When the Server no longer wishes to listen for connections, it
closes the original passive socket.

To review, there are five significant steps that a program, which uses TCP, must
take to establish and complete a connection. The Server side would follow these
steps:

Create a socket.
Listen for incoming connections from Clients.
Accept the Client connection.
Send and receive information.
Close the socket when the Client has finished or when the Server wishes

to no longer be available.

In the case of the Client, these steps are followed:

Create a socket.
Specify the address and service port of the Server program.
Establish the connection with the Server.
Send and receive information.
Close the socket when finished, terminating the conversation.

Only steps two and three are different, depending on whether it is a Client or
Server application.

TCP/IP for 8 and 16 bit Micros 13

5. Drivers, Layers and Stacks
Most engineers are familiar with the concept of a driver - lets define it loosely as
“the combination of function calls and Interrupt Service Routers necessary to
operate a piece of hardware at the message level”. These functions (with a bit of
documentation) allow someone unfamiliar with the details of the hardware to
write application programs that will use the device. However, there is usually
only one way to use a driver (OK two, read or write). A stack is much more, as it
must be a set of co-operating programs written to work together in many different
combinations. Their underlying structure is provided by a commonly agreed set
of protocols (or message standards) each level of the stack hiding the messy detail
of the level below as we become more and more application oriented. The need
for something more complex than a conventional driver also arises from the
nature of communications networks in that we may have to sustain multiple
interactions going on at the same time. On a heavily loaded system the Stack will
make extensive use of a Real Time Operating System (RTOS) if it is available to
simplify its handling of the slow I/O devices.

The TCP/IP stack is broken down into layers as shown below.

Layer Examples Function

Client Application DHCP, FTP, WEB,
YOUR APP Do Something Useful

Transport TCP, UDP Send a Message

Internet IP, PING, ARP
Component parts
Connect, Data,
handshake

Link PPP, SLIP Customise for & talks to
specific hardware

Physical RS232, Ethernet
The hardware chip so
voltage, frequency,
signalling techniques

5.1. Physical Layer
The most commonly used physical connection to a microprocessor is the RS232
serial connection. For long distances this is converted from its absolute voltage,
bit signalling form to a voltage independent, frequency modulated form by a
modem. For high speed connections between PC’s the most common form of
connection is 10Mbit Ethernet using CSMA/CD (Carrier Sense, Multiple Access
with Collision Detection).

All these are examples of different “Physical Layers” and their definitions include
voltages, signalling mechanisms and timing details. Each different mechanism
will have particular characteristics that require data to be specially formatted for it
and this is done by the link layer. The link layer handles such problems as how to

14 TCP/IP for 8 and 16 bit Micros

manage both Escape and Control characters that may perform functions as well as
their binary equivalent as part of data.

5.2. Link Layers - SLIP & PPP
SLIP stands for Serial Line Internet Protocol and is one of the simplest
conventions for sending TCP/IP packages along a serial line. You would
typically use it on a low noise RS232 link between two fixed processors.

It suffers from the following problems –

Each end assumes it knows the identity of the device at the other end.
Only a single conversation can go on at one time.
There is no protection against data corruption at this level and it relies on

the levels above to detect transmission errors.
However the overhead added by SLIP is minimal.

PPP stands for Point to Point Protocol and is the link layer protocol most
commonly used for TCP/IP package communications over modems. If you dial
an ISP (Internet Service Provider) to link to the web or send your emails you are
probably using PPP.

PPP is superior to SLIP as its message structure contains a word (called the Frame
Check Sequence or FCS.) that provides error detection. It also defines a number
of options including a protocol for configuring and testing lines.

The PPP Client on dialling may be allocated an IP address by the Server. This is
necessary as many Servers (such as those used by Internet Service Providers)
allocate a different IP address every time you dial them (dynamic IP addressing).
A simple name and password dialogue can then take place, which is supported in
MicroNet by simple character recognition/output data transfer. MicroNet will
also support a password option built into the protocol – Password Authentication
Protocol (PAP). There are a number of other PPP options which the Server may
ask if they are supported but which, if not available, will not be used. These
options are supported by the RTIP stack and include CHAP CSLIP and Van
Jacobson Compression.

MicroNet supports SLIP and optionally PPP using the integral UART port of the
microprocessor.

5.3. Modems
The MicroNet Modem functions are a part of the core TCP/IP stack and can
support both Dial in and Dial out functions along with commands to simplify
logging into an ISP. All necessary Modem functions must be executed prior to
the start of a PPP dialogue.

TCP/IP for 8 and 16 bit Micros 15

5.4. Link Layers – Ethernet
Each Ethernet interface card or chip has a 48bit unique physical address called its
MAC or OUI. The Ethernet Link Layer includes two protocols that are used to
perform translations between IP addresses and physical addresses. Protocols
called ARP (Address Resolution Protocol) and RARP (Reverse Address
Resolution Protocol) perform the translations. RARP is not currently supported
by MicroNet

If you ask to talk to IP xxx then ARP will look in its table for the MAC that it
knows is associated with that IP address. If it fails to find a MAC associated with
the IP address then a message is sent to all systems on the network asking if they
are the IP xxx. If one successfully acknowledges with its MAC then the table is
updated and an address returned. It is this MAC address that then appears in the
Ethernet packet as the destination address.

MicroNet provides Ethernet support for a number of chips the most popular of
which is the Cirrus Crystal CS8900 Ethernet controller. This is a nice chip that is
easy to interface to embedded processors with substantial transmit and receive
buffers that take much of the load of running Ethernet off the processor. We can
provide circuit diagrams showing both 8-bit I/O mapped and 16-bit memory
mapped configurations. We also support the Realtek 8019, the SMSC 91c111 and
the SMCS 9196.

A similar strategy or a simple fixed table could be adopted for other networks
such as RS-485 or CAN where a translation was required between an IP address
and a protocol specific system identity.

6. Higher Level Protocols
The basic TCP or UDP protocols can be used to exchange messages between
CPUs but in addition there are many other protocols built upon TCP and UDP that
can be used in embedded systems. These are also sometimes referred to as
Application Packages.

6.1. File Transfer Protocol (FTP)
This application copies a complete file from one CPU to another – it does not
allow one CPU to read individual records at a time from files held on the other
CPU (NFS Network File System does that). As most embedded systems do not
include a hard disk, MicroNet includes with this option a simple virtual file
system that can be ROM, RAM or flash based. In this virtual file system the
programmer manages the location of the data and the file system acts as a look up
table for named data sets. This file system puts all file names into a single root
directory.

FTP operation requires an underlying TCP layer. MicroNet currently provides an
FTP Server that allows a remote PC to control the micros operation. Having first
checked the incoming file request against a table of users and passwords the
Server will read and write files from and to the micro’s file system as directed by

16 TCP/IP for 8 and 16 bit Micros

the PC. An FTP Client running on the micro which would take control of the
interaction is not currently available – call Computer Solutions Ltd if you are
interested in this facility.

6.2. Getting an IP address (BOOTP, DHCP & TFTP)
If a device on a network is to successfully communicate with the other devices on
the network it must have a name – its IP address. There are many practical
reasons why it is better to have the network allocate an IP address rather than
have it built into the device ROM or manually set up. As has already been
explained PPP Servers may allocate an IP address whenever a connection is
made. When using multi drop links such as Ethernet, the most common ways of
allocating IP addresses are BOOTP and Dynamic Host Configuration Protocol
(DHCP) Servers. For either of these a Server running on the network is required
(MicroNet only provides Clients, RTIP provides Client and Server options, PC
based Servers are commercially available).

BOOTP is the simpler protocol, the Client requests an IP address and at the same
time can ask for a named file transfer. This file is often used to load the
application code into the device. DHCP is more sophisticated in that the Client
can ask for an IP address which will only be valid for a limited time, after which it
will have to re-apply. The time can be infinite or if required the device can apply
for a time extension. DHCP can also request a file transfer which is done with
TFTP.

In order too minimise the code space required in the embedded device before an
initial file transfer is made, these protocols use the simpler TFTP Client for this
file transfer. Unlike FTP, TFTP does not have any password handling and uses
UDP rather than TCP for the data transfers. It makes little attempt at optimising
transfer times but does implement a handshake to overcome UDP’s inherent
unreliability. MicroNet implements TFTP’s read file function in order to support
BOOTP but does not implement the write file functions. Once the file is received
it is up to the application program to handle any system specific actions required
should it be desirable to start executing the files contents or saving it to flash
memory.

6.3. Web Server (HTTP)
While it may sound like a major commitment of resources to put a “Web Server”
which we usually associate with large UNIX systems on a micro in fact the Web
Server is significantly smaller than the rest of the TCP/IP stack. When used with
a windows browser such as Explorer, it adds significant capabilities to that micro.
The MicroNet Web Server option also includes the virtual file system that holds
the web pages to be requested/browsed.

By linking a PC running Windows and a web browser to a micro running the Web
Server we immediately have a sophisticated color Graphical User Interface (GUI)
whose use will be immediately familiar to a technically literate audience.

TCP/IP for 8 and 16 bit Micros 17

The MicroNet Server can supply the full range of HTML information including
fonts, colors graphics (.gif, .jpg), tables, frames, borders, buttons, check boxes,
drop down menus, radio buttons, text boxes and Java applets.

Of course, these web pages can contain hyperlinks that point to other pages held
in the MicroNet Web Servers file system making it possible to manage complex
dialogues between the user and the microprocessor (ie. operator help manuals).
To reduce load on the micro this manual could be held on the PC or on the
Internet and accessed via an off micro hyper-link.

If you are familiar with the type of Server used by your ISP to host your
companies web pages, you will know that it is possible to insert statements into a
web page that force programs to run on the Server when the page is
requested/browsed. These are called Server side programs and good examples are
CGI scripts and hit counters.

In the same way MicroNet provides the ability to link to user supplied functions
that execute on the microprocessor. Typically these might be

A function that is executed to start/stop a machine when a button was
pressed on a web page.

A function that was executed while the web page was being assembled
and which picked up a variable in the microprocessor, converted it to an
ASCII string and put it into the resulting web page sent to the browser.
This would display the current value of that variable every time the web
page was requested.

A function that accepted a character string when a text box is filled and a
web “Submit” operation occurs. The function will typically convert the
text string to a value, validate it and then use it to set some application
variable on the microprocessor.

Down at the microprocessor level if the file system is held in RAM or flash it is
possible for the web pages themselves to be dynamically created or modified.
Simple examples might be to have a number of different graphical representations
of a tank of liquid and to change the image name to point to one of eleven images
showing - empty, 10%, 20% … full. Another example is to have a function that
changes the html text that set the colour of the names of those items in alarm
states.

A web browser is not available within the MicroNet suite as its complex GUI is
not considered viable on the small memory range micros that it is targeted at. On
larger processors the Webster embeddable browser and PEG the embedded
windows package will operate with the full RTIP and CMX-TCPIP stacks.

6.4. JAVA and beyond
It is even possible to use JAVA when the Web Server is an 8051! How? Well the
JAVA scripts or applets can execute on the browsing PC even though they are
held within web pages or as files on the microprocessor. In this way a stream of
characters representing data logged by the micro could be requested and

18 TCP/IP for 8 and 16 bit Micros

converted in the PC into a graph by a JAVA applet, which the PC requested from
the microprocessor. This JAVA applet would be sent to the PC, by a browser
request, as part of the normal processing of an .html file. The JAVA applet once
running would interact with the user to ask for the time interval over which he
wished to view the data. The JAVA applet would then send a text string to the
microprocessor specifying the required date range and accept a binary file with
the data from the microprocessor. Or the applet can set up a TCP/IP link for more
complex interactions. It would then be up to the JAVA applet to format the
graph.

Please note this example is not provided as a MicroNet demonstration but has
been outlined here to show the range of possibilities that exist once a Web Server
is available, it is certainly possible but also non trivial.

6.5. Simple Mail Transfer Protocol (SMTP)
Based on TCP this Client application allows a micro to send an email to any
Server that supports it (most ISP’s will accept SMTP). The MicroNet SMTP
option is currently limited to one recipient, per email and one us-ascii text
attachment.

6.6. Post Office Protocol (POP3)
POP3 Client is the most common way of receiving emails and is supported by
most ISP’s. It allows the Client to request the number of emails waiting for it,
their origin, size and the subject line of each message. It then can retrieve
selected messages and delete them from the Server. MicroNet does not currently
support this option – call Computer Solutions Ld if you are interested in this
facility.

6.7. Simple Network Management Protocol (SNMP)
This protocol based on UDP is used to manage devices attached to a network. It
is typically used for devices such as routers and Servers. It provides network
managers with the ability to access and change network settings as well as to be
informed when specific events occur. At first sight this would seem to be the
ideal way to communicate with embedded control or data acquisition devices,
however, the needs of network management are so specific (and the budget of
those managing large networks are so large) that we have not been able to
successfully identify any network management tools that appear to be applicable
to the general embedded TCP/IP market.

SNMP is not yet available for MicroNet, call Computer Solutions Ltd if you have
an interest in this option.

6.8. Ping
Not a protocol, but a useful program (usually found in C:\Windows on your PC)
that will send a message to a host on the network and time the round trip message
time. MicroNet can respond to a ping but cannot initiate one. This is a very

TCP/IP for 8 and 16 bit Micros 19

useful diagnostic aid used to check the existence of stations on the network. The
only part of ICMP (Internet Control Message Protocol) that MicroNet supports is
the Ping response.

7. Choosing a Protocol
 So back to our examples………….

Example 1 Micro to Micro

Micro Micro

For the Micro to Micro link we can use the socket interface and the TCP protocol
to ensure reliable communications between the micros over long distance serial
links or faster short range Ethernet. If the application has facilities for device
polling with good message handshakes we may choose to use UDP. Another
application where UDP should be considered is voice or video over IP. UDP’s
lower overhead will improve throughput and the application does not have time to
recover poor data but the human observer is good at ignoring occasional blips.

Example 2 Micro to PC

PC Micro

The same arguments apply to Example 2 where we are talking to a PC but be
warned that the micro may be easily overwhelmed by a flood of UDP messages
pumped out by a 1700 MHz PC. If large amounts of data are to be exchanged or
the application structure suits it we might use FTP, the File Transfer Protocol,
which is an optional MicroNet module.

In Example 2b where the PC is used as a terminal providing a full time operator’s
consol, it would be possible to write a GUI application on the PC in C++ or
Delphi that communicated via the Windows Socket interface to TCP/IP. But
depending on the requirement and particularly if the link is more transient (set-up
/ diagnostics) then the possibility exists of replacing the conventional ASCII
character based keyboard dialogue with a Web Server that provides a convenient
ready-made Windows front end. Using this Web Server it is possible to set or
read variables and to control the application by commanding particular functions
to be executed. This may also be more easily customised to suite a range of users
and applications. Note that to run Explorer without modems at each end requires

20 TCP/IP for 8 and 16 bit Micros

TCP/IP for 8 and 16 bit Micros 21

the PC to run a Null Modem driver – availability of this for the common operating
systems is currently under investigation.

Example 3 Remote dial-up Micro

MODEM
POTS

PC MODEM MICRO

Because of the modem lines low reliability TCP will be the protocol of choice for
all applications. This system could use a custom PC based application program
communicating via Sockets or TCP/IP datagrams but is also ideally suited to
running an FTP Server if you just want to get in values, say from a data logger.
Using a Web Server on the micro makes remote operator control very simple, as
all that is required is to run a conventional web browser such as Internet Explorer
on the PC and PPP on the micro. But there is much more we can do - for example
using SMTP it would be possible for the micro to dial an ISP (also needs PPP)
and leave an email each night giving the day’s results. A simple procedure would
then allow all emails from a number of machines to be merged. The micro might
send an email to indicate alarm conditions and there are services that will convert
such an email into a text message sent to a designated mobile phone or to a pager.
Emails from a central computer could be used to set new limits or, using an
attachment, to provide new operational software to be loaded into the micro’s
Flash.

Example 4 Multi Drop Networks

…. PC2 PC1 MICRO2MICRO1

Ethernet or other multi drop protocols

All the applications described for the last example apply when we have one micro
and one PC but in addition we now have a whole new set of system possibilities.

Distributed applications with micros sharing data

Multiple PC’s using Web Servers able to inspect any part of the plant (but
do you really want anyone on the network to be able to control that Steel
Mill press?)

Care must however be taken as Ethernet is non deterministic – there have been
discussions on the Real Time Newsgroup where people have said things such as
“Ethernet is fine for control so long as you don’t load the line by more than 10%
of its bandwidth.” Can you guarantee that your customer will put in a fresh line

for this application or will he be unable to resist putting it onto the same Local
Area Network as the sales office PC’s? And what will be the effect on your
application when someone in Marketing transfers that high resolution Photoshop
image of the company’s latest full-page advertisement across the network at a
critical point in your control loop?

8. CMX MicroNet Features and limitations
CMX-MicroNet is a TCP/IP implementation designed to work with processors
that have a small amount of ROM and RAM. It is also highly configurable,
enabling the developer to further minimize resource usage.

Many stacks including those sold for use with larger CPUs are quite profligate in
their use of resources – both CPU time and RAM. In particular when processing
information down the stack from application to high level Protocol to low level
Protocol to driver each layer may add heading and trailing data as shown on the
next page.

Ethernet
Header

IP
Header

TCP
Header

Ethernet
Trailer

Application Data

IP
Header

TCP
Header

Application Data

TCP
Header

Application Data

Application Data

Data link

Internet

Transport

Application

Many do this by creating a new buffer, loading the header, copying the data it is
given into the buffer and then adding any trailing data. This buffer is then passed
down to the next level of protocol. The result is a lot of CPU cycles used to copy
characters and a high RAM requirement. Both MicroNet and RTX have a “No
Copy” mode which avoids this unwelcome overhead.

CMX-MicroNet supports up to 16 sockets using TCP or UDP. All 16 sockets can
be PPP sockets, SLIP sockets or Ethernet sockets, but not a mixture of PPP
sockets, SLIP sockets and Ethernet sockets at the same time. The RS232 link can
either be a direct cable link or through a modem.

In order to reduce code and data sizes a number of departures were made from the
full RFC standards in that not all of the options are supported. TCP options are
ignored, in particular it should be noted that it does not support sliding windows
and it will not accept an out of order packet – it does not acknowledge higher
number packets until all intermediate packets are received. Other limitations in
the options available have been identified in the description of these protocols.

22 TCP/IP for 8 and 16 bit Micros

9. Integrating CMX-MicroNet
Unlike most TCP/IP stacks and in order to minimise the memory footprint, CMX-
MicroNet does not require nor include a real time operating system (RTOS). The
question therefore arises as to what programming strategies are available for
building an application that uses the CMX-MicroNet functions?

9.1. Using TCP/IP for Communications
In many cases the stack will be used to provide communication via PPP, UDP or
TCP links to other computers as part of an application. If this is a new project
being written from scratch it is easy to design the application code so that it does
not conflict with the MicroNet packages requirements. If you are adding
MicroNet on top of an already existing application then this will be a little more
complex. In either case it is valuable to know some more about how MicroNet
allocates CPU time.

Firstly, the peripherals such as UARTS or Ethernet chips are driven under
interrupts with this “driver code” putting its data into or getting it from character
buffers. So if your application can be driven completely from interrupts it can
easily co-exist with a high level routine that performs the necessary TCP/IP code.

Secondly, it is important to understand which MicroNet functions retain control
until I/O is completed and which return without having to wait for any I/O.

UDP send returns once the buffer is set up it does not wait

UDP receive does not return until the input transmission is completed

TCP send sets up the buffer to be transmitted and immediately goes to
waiting to receive the acknowledgement

TCP receive waits for the message and returns once it has started to send
an acknowledgement

So in effect the system either returns control after setting up a write or it is sitting
waiting for a read to complete. While it is waiting for a read to complete it polls
the received byte count. Each time it does so unsuccessfully (message not yet
complete) it executes the callback routine (mn_app_recv_idle) so any high
level code put into that routine can be executed during the time that the TCP/IP
interaction is taking place.

The Third alternative is to reduce the receive message time-out so that any receive
functions return shortly after the call has been issued. CPU time can then be used
for application code but in this case it is necessary to add extra code to establish
when a receive function is complete and to identify a true error such as a broken
line.

9.2. Using a Server
When using a Server such as the HTTP Web Server there is only a single
application function mn_web_Server and CMX-MicroNet only drops out of

TCP/IP for 8 and 16 bit Micros 23

that should the line go down. This is fine for the fully interrupt driven application
but especially if retro fitting CMX-MicroNet to a current application another form
of CPU sharing needs to be used.

Within each of the Servers a callback routine is provided that will execute at any
time that the Server is inactive. For example, for the Web Server this is
mn_app_http_Server_idle.

The application code can easily be placed in this idle routine, however care should
be taken that any single execution of the idle routine does not include long time
delays, as that will reduce the perceived responsiveness of the Server.

9.3. CMX-MicroNet with an RTOS
CMX-MicroNet has been designed to operate successfully under an RTOS should
one be available. This could be a homegrown RTOS, CMX-RTX (available for
most CPUs) or any proprietary RTOS. If this is being done, the timer ISR will
need to be recoded to make use of the RTOS clock. CMX-MicroNet only
supports one socket call in operation at a time so it is not possible for multiple
tasks to be executing socket calls at the same time. The best way of preventing
this is to perform all the CMX-MicroNet functions from within one task dedicated
to the communications functions. Should you need more complex multi-task
structures then you should probably consider using the full CMX-TCP stack
which can support multi tasked access to multiple active sockets.

9.4. Allocating Addresses
When doing the detailed designing of a product you will soon get to the question
“But what address does this unit have and how/when do I set it?” If you are using
PPP into a dial up Server then it is easy as you will be allocated an IP number
whenever you dial in.

When using multidrop networks remember that the IP addresses are all local to
the network they are on so if you have multiple outstations running on a dedicated
network you can build the IP addresses into the outstation’s ROM and set the
system up to run with those addresses. This is simple but naïve – if you have a
spare device you will need to blow fresh PROMs before you can use it – OK put
the address on jumpers or in flash with some configuration procedure. If you
have a PC or RTIP system on the network then it is much better to set it up with a
BOOTP or DHCP Server so that addresses are allocated automatically.

If you are using Ethernet then you must allocate each unit with a unique 48 bit
address (MAC) – again fine if your equipment is the only thing on the network
but as soon as someone puts a PC with a network card on it you have a potential
contention.

MAC addresses are allocated by IEEE and if you plan to produce a significant
number of units you should consult them. For small numbers of units it may be
worth asking your Ethernet chip supplier for a set of MACs as each chip will
require one. As a last resort there are a number of alternative strategies that break
the rules but for which the chance of two numbers conflicting are small.

24 TCP/IP for 8 and 16 bit Micros

10. Further Reading and browsing
Books
TCP/IP for Dummies Leiden & Wilensky Published by IDE Books, ISDN
0-7645-0063-5 - partly an introduction to managing IT Servers but still a good
starting place.

TCP/IP Illustrated Vol. 1 R. Stevens Published by Addison Wesley ISBN
0-201-63346-9 – showing its age (1994 so the web only gets 4 lines in 555 pages)
but still the best place to go if you want to know about the details of TCP message
structures.

Internetworking with TCP/IP by Douglas E. Comer

RFC 1180 – A TCP/IP Tutorial http://www.faqs.org/vfcs/

Web sites
Embedded TCP/IP Grasping the fundamentals – a short article on TCP/IP basics
for embedded use
http://www.embeddedtechnology.com/read/n120000720/195152

RFC/STD/FYI/BCP that’s Request for Comment / Internet Standards / For Your
Information / Best Current Practice. These documents are the way the TCP/IP
protocol standards and recommended ways of working are promulgated
http://www.faqs.org/rfcs/

Applications programs
Note that at the time of writing Computer Solutions are still investigating a range
of programs that can be used with Internet enabled embedded targets but the
following look promising.

Catalyst’s SocketWrench is a free, general purpose Windows library that includes
ActiveX components which drive the Windows Sockets – So you can insert an
object into your C++ or VB application. They also have an even better one that
they charge for http://www.catalyst.com/products/wrench.html

Borland’s DELPHI database, Pascal and C++ based programming languages
provides socket calls that can be used on the PC end of applications as well as
FTP and SMTP capabilities.

Tal’s TCPWedge software claims to input and output TCP/IP data from any IP
addresses directly into any Windows 95 or NT application. Excel, Access,
FoxPro, Oracle, Wonderware, Intellution, other MMIs, LIMS, SPC programs,
control applications http://www.taltech.com

Dr. Herbert Hanewinkel’s website has useful, low cost, DHCP/Bootp and TFTP
Servers available for Windows 9x / Me / NT / 2000 / XP go to
http://www.heha.cjb.net/homee.htm select “Shop” then “Internet Tools”.

TCP/IP for 8 and 16 bit Micros 25

http://www.embeddedtechnology.com/read/n120000720/195152
http://www.faqs.org/rfcs/
http://www.catalyst.com/products/wrench.html
http://www.taltech.com/
http://www.heha.cjb.net/homee.htm

11. Common Mnemonics

ARP Address Resolution
Protocol Translates an internet address into a hardware address

BOOTP Bootstrap Protocol For remote booting of diskless devices

CGI Common Gateway
Interface

A standard that allows web pages to invoke and pass
data to Server programs

CHAP
Challenge Handshake
Authentication
Protocol

PPP password that allows both ends to check for a
valid connection

CSLIP Compressed Serial
Line Interface Protocol Compressed version of SLIP

DHCP Dynamic Host
Configuration Protocol Allocates IP addresses dynamically

DNS Domain Name Server A program / computer that converts a domain name
into its IP address

FTP File Transfer Protocol An application that transfers files across the network

HTML Hyper Text Mark-up
Language The standard used to create web pages

HTTP Hyper Text Transfer
Protocol The protocol used to transmit web pages

ICMP Internet Control
Message Protocol Used to report errors from IP level and above

IGMP Internet Group
Management Protocol

Used when broadcasting to groups that exist across
routers.

IMAP Internet Mail Access
Protocol

A relatively new advanced email Server that allows
users to hold and manage their emails on the Server.

IP Internet Protocol The mechanism for delivering packets across the
network

IPv6
The next proposed
version of Internet
Addressing Protocol

Able to address many more items on a network this
extension to IPv4 is still a few years away from
normal use.

IPCP IP Control Protocol PPP's control protocol

IPSec Secure Internet
Protocol A secure version of IP

IIOP Internet Inter ORB
Protocol Protocol for passing object data

ISP Internet Service
Provider

A company that links an end user to the Internet
backbone

LCP Link Control Protocol PPP option negotiation

26 TCP/IP for 8 and 16 bit Micros

MIB Management
Information Base A table of devices used by SNMP

MIME Multi Purpose Internet
Mail Extensions Standard for adding diverse types of files to emails

MFS MicroNet File System Used by Microsoft OSs to link file systems across
networks.

MTA Mail Transfer Agent An application for sending emails

MUA Mail User Agent An application for creating and reading emails

NFS Network File System A protocol for controlling remote file systems

NTP Network Time Protocol Used to set the clocks on multiple machines across a
network

ORB Object Request Broker Standard for object data interchange

PAP
Password
Authentication
Protocol

PPP password

PING A diagnostic program It tests the connection with a specified URL

POP3 Post Office Protocol A mail protocol for retrieving email that can include
attachments

PPP Point to Point Protocol Provides links between computers on a network

RARP Reverse Address
Resolution Protocol

Allows a host to obtain its IP address by sending its
hardware address

RIP Router Internet
Protocol Used to control Routers

SLIP Serial Line Interface
Protocol Simple protocol often used with RS232

SMTP Simple Mail Transfer
Protocol

Protocol for sending and receiving emails. Messages
must be text

SNMP Simple Network
Management Protocol

Protocol used by computers that monitor and manage
network activity to communicate with one another
and the computers they are monitoring
Comes in 3 versions:
 v1 Simple – Simple
 v2 Some Security
 v3 Advanced Security & Encryption

SSL Secure Socket Layer Sits below TCP, UDP and uses encryption and
certification to provide commercial levels of security.

TCP Transmission Control
Protocol Puts data into packets for delivery by IP

TELNET An application that allows logging into remote
computers

TCP/IP for 8 and 16 bit Micros 27

28 TCP/IP for 8 and 16 bit Micros

TFTP Trivial File Transfer
Protocol

TFTP is a simpler version of FTP which does not
require valid username and password.

UDP User Datagram
Protocol

Protocol at the internet layer. UDP does not guarantee
reliable, sequenced packet delivery. So if data does
not reach its destination, UDP does not retransmit as
TCP does

	Introduction
	Objectives
	Typical Application
	Example 1 Micro to Micro
	Example 2Micro to PC
	Example 3Remote dial-up Micro
	Example 4Multi Drop Networks

	Transmission Control Protocol
	User Datagram Protocol
	Making the connection
	IP Address and Hostnames
	Service Ports
	Sockets
	Blocking vs. Non-Blocking Sockets
	Client-Server Applications

	Drivers, Layers and Stacks
	Physical Layer
	Link Layers - SLIP & PPP
	Modems
	Link Layers – Ethernet

	Higher Level Protocols
	File Transfer Protocol (FTP)
	Getting an IP address (BOOTP, DHCP & TFTP)
	Web Server (HTTP)
	JAVA and beyond
	Simple Mail Transfer Protocol (SMTP)
	Post Office Protocol (POP3)
	Simple Network Management Protocol (SNMP)
	Ping

	Choosing a Protocol
	
	Example 1 Micro to Micro
	Example 2Micro to PC
	Example 3Remote dial-up Micro
	Example 4Multi Drop Networks

	CMX MicroNet Features and limitations
	Integrating CMX-MicroNet
	Using TCP/IP for Communications
	Using a Server
	CMX-MicroNet with an RTOS
	Allocating Addresses

	Further Reading and browsing
	Common Mnemonics

